



# Enhanced ISS Robotic Ground Control

Phillip Callen/ER3 Software, Robotics & Simulation Division 281-483-8087 phillip.s.callen@nasa.gov



#### Problem Statement



- The ISS is moving to as much ground control for robotics as possible in order to free up crew time (SPDM ops are 100% GC)
- Performing robotic operations on ISS is a time consuming process (1-3 days)
- Because planning for robotics operations is a constraint driven process, there are few windows (1-3 days) available
- This limitation of available windows is in conflict with our desire and need for an increasing number of robotic operations



## Objective

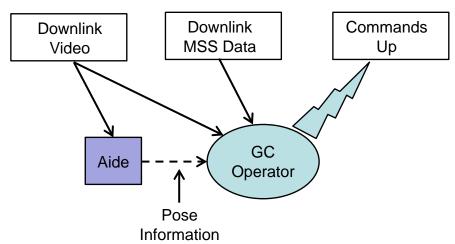


- The objective of this effort is to increase the efficiency of ISS ground-controlled robotics operations
- Use a phased approach to steadily increase the necessary system infrastructure and increase confidence in the system in a fashion similar to how ground control was implemented
- The successful outcome will provide a tremendous increase in robotics utilization for the life of ISS as well as provide the blueprint (and validation) for future exploration missions utilizing remote robotic operations



#### Premise

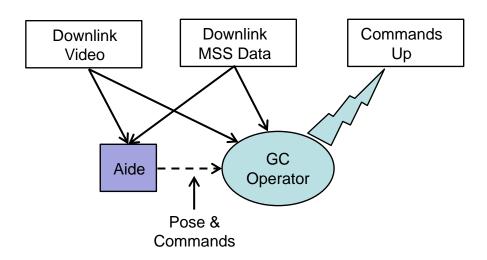



- The MSS is existing hardware and software that is not easy to modify (both from a cost and technical perspective)
- Intelligent ground control aids can be developed to improve and increase efficiencies for the GC operator
- The primary sensor that is available to provide information and help close the loop is video



## Development Phases

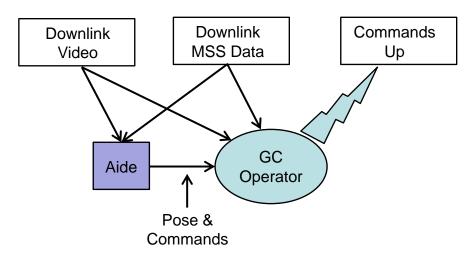



- Phase 1 Initial Aide Identification and Development
  - Joint development effort with ER and DX
  - Aide would provide additional/enhanced information to the operator, like digital pose estimation based on Natural Feature Image Recognition (NFIR)
    - Starting with one of the most time-consuming and most frequent ground operations – SPDM grasp of hardware fixtures
  - Initial implementation would be a standalone box, i.e. something that can be taken to a simulator or MCC and just plug a video feed into it.





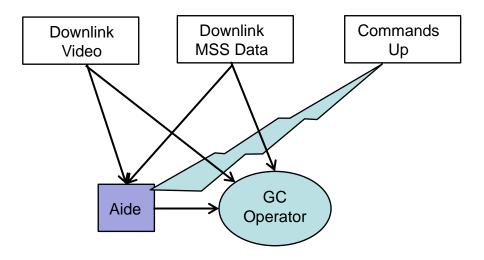



- Phase 2 Increased Aide Functionality
  - Aide could suggest MSS commands or perhaps even go so far as generate the commands, but not send them.
  - Begin fusing data from various camera views and MSS system data (i.e., control modes, joint position, etc.)
  - Ground retains full control over what commands get sent onboard





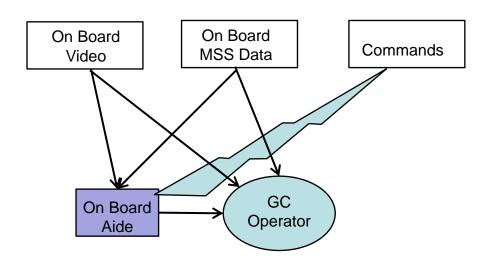



- Phase 3 Limited Autonomy
  - Aide generates and sends a subset of MSS commands perhaps limited to only non-motion commands or motion commands limited by distance to structure and TDRS coverage
  - More mature and increased data fusion capability
  - Ground still does "close quarters" commanding, and would still have the responsibility to monitor and be prepared to safe the system if necessary








- Phase 4 Full Autonomy
  - Aide generates and sends all MSS commands regardless of motion distance and operational complexity
    - No motion during Ku-band or S-band LOS
  - Full maturity and intelligence of data fusion capability
  - Ground would still monitor and would still be able to safe the system if necessary







- Phase 5 Full Autonomy (On-Board ISS)
  - Aide generates and sends all MSS commands regardless of TDRS coverage
    - Stand-alone software would be needed onboard to continue during LOS periods (may require sub-phases to get to full implementation)
    - No changes to MSS software
  - Ground would still monitor when not LOS and would still be able to safe the system if necessary



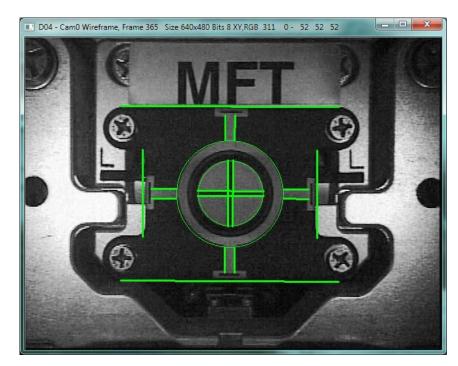


#### **Current Status**



- ER and MOD awarded funds for Phase 1 through the JSC IR&D for proof-of-concept development
- ER developed NFIR capability based around MTC target and grasp operation using video from recent grasp operations
  - Initial results showed that the concept works as desired and that continued development is worthwhile
  - A real-time test in the MCC was done in June had very encouraging results




## **Enhanced Ground Control Demo**



| EGC NFIR Command and Status                                               | 7 4 3   |                             | ×                        |
|---------------------------------------------------------------------------|---------|-----------------------------|--------------------------|
| Pose - EGC OTCM1 - Rel To Grp/Fixt Zero - CM/Deg                          |         |                             |                          |
| +6.040 x                                                                  |         | -0.30                       | Pitch                    |
| -0.198 Y                                                                  |         | -0.98                       | Yaw                      |
| +0.118 z                                                                  |         | -0.33                       | Roll                     |
| 350120.306 Ima                                                            | ge Time | 365                         | Seq Number               |
| ∘ Is Valid                                                                | -Units  | nches/Deg                   | ে CM/Deg                 |
| Camera<br>• OTCM1                                                         | C A End | 1                           | C Mast                   |
| С отсм2                                                                   | C B_End |                             | C PlaceHolder]           |
| Lens                                                                      |         |                             |                          |
| ○ Narrow                                                                  |         |                             |                          |
| EGC Coordinate Pose Relative To Camera Cam/Tgt Zero Grip/Fxtr Zero Target |         |                             |                          |
| ∘ MTC                                                                     | C DHT   | C Reserve_1                 |                          |
| ○ TCT                                                                     | C MDHT  | C Reserve_2                 |                          |
| Exposure Control  C Auto Camera  Manual Increase  Manual Decrease         |         |                             |                          |
| Video Output Ima<br>C Raw Camera<br>C Acquisition                         | ○ Sub   |                             | • NFIR Overlay 0 _0->63_ |
| Video Size  ○ Full ○ Half ○ Qtr ▼ Compression 15 FPS—                     |         |                             |                          |
| Range Seed - CM-                                                          | ✓       | Display Vide<br>Record Vide |                          |

User interface showing alignment positional error

Green overlay provides visual feedback of tracking





#### **Forward Work**



- Solution is being refined based on data collected during the realtime test in June
- Work is starting on porting from Windows to Linux (MOD requirements in order to use the software in MCC)
- Procuring MCC compatable frame-grabbing and processing hardware
- Planning to expand the number of grasp target types supported
  - Only MTC target is in the database now this is the most prominent target type and will be the "standard" target for all future hardware
- Planning to expand capability to support operations beyond grasps like RPCM insertion and FRAM installs.
  - These are non-target based operations and will utilize surounding structure for the cueing information.



## Forward Work (cont.)



- Based on positive performance shown to date, a CR will be submitted for continued development of Phase 1 and Phase 2
  - Phase 1 activity would be an expansion of operations that can be used by ground control
    - Additional grasp targets
    - Non-grasp operations like FRAM installs and ORU insertions
  - Phase 2 would begin the building of a commanding capability fusing data from cameras and MSS data
  - Targeting demonstration for SpaceX-6 3 FRAMs up/3 FRAMs down
- Subsequent CRs would be submitted for the remaining Phases based upon the success of the proceeding Phase